Ends and Coends

A.P. Neate

In these notes I will introduce the notions of ends and coends following the definitions given in [1] and [2]. These are objects which can be thought of as generalisations of limits and colimits respectively. An end can be thought of as a universal wedge so I will start by defining a wedge.

1 Wedges

Definition 1.1. Let C and D be categories with functor $T(-,-): C^{\mathrm{op}} \times C \rightarrow$ D. A wedge of T consists of an object $e \in \mathrm{ob}(D)$ and a collection of morphisms $\left\{\omega_{a}: e \rightarrow T(a, a)\right\}_{a \in \operatorname{ob}(C)}$ such that for every morphism $f: a \rightarrow b$ in C the following diagram commutes.

Example 1.2. Let T be the hom functor $C(-,-): C^{\mathrm{op}} \times C \rightarrow \mathbf{S e t}$. For every morphism $f: a \rightarrow b$, a wedge (e, ω) of T is required by definition to satisfy $\omega_{a} \circ C\left(\operatorname{id}_{a}, f\right)=C\left(f, \mathrm{id}_{b}\right) \circ \omega_{b}$. Re-written, that is $\omega_{a} \circ f=f \circ \omega_{b}$. Note that this is exactly the condition for a collection of morphisms ω to comprise a natural transformation from id_{C} to itself. Hence, we can think of e as some set of natural transformations $\mathrm{id}_{C} \rightarrow \mathrm{id}_{C}$.

2 Ends

Now we know what a wedge is we can provide the definition of an end.
Definition 2.1. Let $T(-,-): C^{\mathrm{op}} \times C \rightarrow D$ be a functor of categories C and D. The end of T is a wedge (E, Ω) which satisfies the universal property that for any wedge (e, ω) and object $a \in \mathrm{ob}(C)$, there exists a unique map
such that following diagram commutes.

This universal property provides uniqueness of E up to isomorphism. The object of the end is denoted $\int_{c \in C} T(c, c)$.

Now we will take at look at some examples.
Example 2.2. 1. Consider the end of the hom functor $C(-,-): C^{\mathrm{op}} \times$ $C \rightarrow$ Set. By Example 1.2 we know that the wedges of $C(-,-)$ correspond to sets of natural transformations. The universal property ensures that $\int_{c \in C} C(c, c) \cong \mathrm{NT}\left(\mathrm{id}_{C}, \mathrm{id}_{C}\right)$ because if there were natural transformations missing there would be wedges that wouldn't factor through and if any natural transformation appears twice then a set containing just one element corresponding to that natural transformation would give at least two maps into the end rather than a single unique one.
2. Let F and G be functors $C \rightarrow D$ then consider the functor $T=$ $D\left(F^{\mathrm{op}}(-), G(-)\right): C^{\mathrm{op}} \times C \rightarrow$ Set where F^{op} is the functor $C^{\mathrm{op}} \rightarrow$ $D^{\text {op }}$ induced by F. For reasons similar to the first example, the end $\int_{c \in C} T(c, c)$ is isomorphic to the set of natural transformations $\mathrm{NT}(F, G)$.
3. Let T be a functor which does nothing in its first component and sends its second component to the image under a functor $F: J \rightarrow C$, i.e. $T(a, b)=F(b)$. To see what is happening here let us substitute this functor into the diagram which defines the end E. For any a, b and morphism $f: a \rightarrow b$ in the category J the following diagram commutes.

Since this diagram commutes, when we identify the objects $F(b)$ we recover the definition of a limit E of some diagram F over an indexing category J. It is in this sense which ends generalise limits.
4. An end may not necessarily exist for a given functor. For example the functor F from the empty category to the category of fields does not admit a limit because there are no terminal objects in the category of fields. The functor F corresponds to a functor $T\left(c, c^{\prime}\right)=F\left(c^{\prime}\right)$ which does not admit an end or we would have a limit of F and hence a terminal object of fields.

3 Cowedges and Coends

As with a many definitions in category theory, ends have a dual notion [1].
Definition 3.1. Let C and D be categories with functor $T(-,-): C^{\mathrm{op}} \times C \rightarrow$ D. A cowedge of T consists of an object $e \in \operatorname{ob}(D)$ and a collection of morphisms $\left\{\lambda_{a}: T(a, a) \rightarrow e\right\}_{a \in \mathrm{ob}(C)}$ such that for every morphism $f: b \rightarrow a$ in C the following diagram commutes.

Much like with ends, a coend is a universal cowedge.
Definition 3.2. Let $T(-,-): C^{\mathrm{op}} \times C \rightarrow D$ be a functor of categories C and D. The coend of T is a cowedge (E, Λ) which satisfies the universal property that for any cowedge (e, ω) and object $a \in \operatorname{ob}(C)$ the following diagram commutes.

The object of the coend is denoted $\int^{c \in C} T(c, c)$.
Example 3.3. 1. Similarly to how we can write limits as ends in Example 2.2, we can take a colimit of a functor $F: C \rightarrow D$ by defining $T(a, b)=F(b)$ and taking a coend. In exactly the same way as in the case of limits and ends, we have that the colimit of F is the coend $\int^{c \in c} T(c, c)$.
2. Let's consider the coend of $\boldsymbol{\operatorname { S e t }}(-,-): \boldsymbol{S e t}^{\mathrm{op}} \times$ Set \rightarrow Set. Since the coend $E:=\int^{c \in \operatorname{Set}} \operatorname{Set}(c, c)$ contains the image of every morphism λ_{a} we can consider E to be the disjoint union $\bigsqcup_{c \in C} \operatorname{Set}(c, c)$ modulo some equivalence relation \sim. Our cowedge diagram exactly says that for every morphism $f: b \rightarrow a$ we need $f \circ \lambda_{a}=\lambda_{b} \circ f$ and so we need $(\alpha: a \rightarrow a) \sim(\beta: b \rightarrow b)$ whenever there exists a morphism $f: b \rightarrow a$ such that $f \alpha=\beta f$. The universal property for a coend tells us E must contain all elements of $\bigsqcup_{c \in C} \boldsymbol{\operatorname { S e t }}(c, c) / \sim$.
3. For a group G, consider the one object category $B G$ where the morphisms are group elements composed by multiplication. The coend of $B G(a, b): B G^{\mathrm{op}} \times B G \rightarrow$ Set as above is the set $\bigsqcup_{c \in C} B G(c, c) / \sim$ where $(\alpha: a \rightarrow a) \sim(\beta: b \rightarrow b)$ if and only if there exists $f: b \rightarrow a$ such that $f \alpha=\beta f$. For this category however, there is only one hom set and $f \alpha=\beta f$ implies $\alpha=f^{-1} \beta f$ which is exactly to say that $\alpha \sim \beta$ if they share a conjugacy class in G. Hence, the coend $\int^{c \in B G} B G(c, c)$ is the set of conjugacy classes of G.

References

[1] Saunders Mac Lane. "Special Limits". In: Categories for the Working Mathematician. Springer New York, 1978, pp. 222-229. ISBN: 978-1-4757-4721-8. Doi: $10.1007 / 978-1-4757-4721-8 _10$.
[2] Simon Willerton. The n-Category Café. 2014. Url: https://golem.ph. utexas.edu/category/2014/01/ends.html (visited on 06/28/2023).

