
Ends and Coends

A.P. Neate

In these notes I will introduce the notions of ends and coends following
the de�nitions given in [1] and [2]. These are objects which can be thought of
as generalisations of limits and colimits respectively. An end can be thought
of as a universal wedge so I will start by de�ning a wedge.

1 Wedges

De�nition 1.1. Let C andD be categories with functor T (−,−) : Cop×C →
D. A wedge of T consists of an object e ∈ ob(D) and a collection of
morphisms {ωa : e → T (a, a)}a∈ob(C) such that for every morphism f : a → b
in C the following diagram commutes.

e T (a, a)

T (b, b) T (a, b)

ωa

ωb T (ida,f)

T (f,idb)

Example 1.2. Let T be the hom functor C(−,−) : Cop × C → Set. For
every morphism f : a → b, a wedge (e, ω) of T is required by de�nition to
satisfy ωa ◦ C(ida, f) = C(f, idb) ◦ ωb. Re-written, that is ωa ◦ f = f ◦ ωb.
Note that this is exactly the condition for a collection of morphisms ω to
comprise a natural transformation from idC to itself. Hence, we can think
of e as some set of natural transformations idC → idC .

2 Ends

Now we know what a wedge is we can provide the de�nition of an end.

De�nition 2.1. Let T (−,−) : Cop × C → D be a functor of categories C
and D. The end of T is a wedge (E,Ω) which satis�es the universal property
that for any wedge (e, ω) and object a ∈ ob(C), there exists a unique map
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such that following diagram commutes.

e

E T (a, a)

ωa

Ωa

!∃

This universal property provides uniqueness of E up to isomorphism. The
object of the end is denoted

∫
c∈C T (c, c).

Now we will take at look at some examples.

Example 2.2. 1. Consider the end of the hom functor C(−,−) : Cop ×
C → Set. By Example 1.2 we know that the wedges of C(−,−) cor-
respond to sets of natural transformations. The universal property
ensures that

∫
c∈C C(c, c) ∼= NT(idC , idC) because if there were natural

transformations missing there would be wedges that wouldn't factor
through and if any natural transformation appears twice then a set
containing just one element corresponding to that natural transforma-
tion would give at least two maps into the end rather than a single
unique one.

2. Let F and G be functors C → D then consider the functor T =
D(F op(−), G(−)) : Cop × C → Set where F op is the functor Cop →
Dop induced by F . For reasons similar to the �rst example, the
end

∫
c∈C T (c, c) is isomorphic to the set of natural transformations

NT(F,G).

3. Let T be a functor which does nothing in its �rst component and
sends its second component to the image under a functor F : J → C,
i.e. T (a, b) = F (b). To see what is happening here let us substitute this
functor into the diagram which de�nes the end E. For any a, b and
morphism f : a → b in the category J the following diagram commutes.

e

E F (a)

F (b) F (b)

!∃
ωa

F (f)

F (idb)

Ωb

ωb
Ωa
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Since this diagram commutes, when we identify the objects F (b) we
recover the de�nition of a limit E of some diagram F over an indexing
category J . It is in this sense which ends generalise limits.

4. An end may not necessarily exist for a given functor. For example the
functor F from the empty category to the category of �elds does not
admit a limit because there are no terminal objects in the category of
�elds. The functor F corresponds to a functor T (c, c′) = F (c′) which
does not admit an end or we would have a limit of F and hence a
terminal object of �elds.

3 Cowedges and Coends

As with a many de�nitions in category theory, ends have a dual notion [1].

De�nition 3.1. Let C andD be categories with functor T (−,−) : Cop×C →
D. A cowedge of T consists of an object e ∈ ob(D) and a collection of
morphisms {λa : T (a, a) → e}a∈ob(C) such that for every morphism f : b → a
in C the following diagram commutes.

e T (a, a)

T (b, b) T (a, b)

λa

λb T (ida,f)

T (f,idb)

Much like with ends, a coend is a universal cowedge.

De�nition 3.2. Let T (−,−) : Cop × C → D be a functor of categories C
and D. The coend of T is a cowedge (E,Λ) which satis�es the universal
property that for any cowedge (e, ω) and object a ∈ ob(C) the following
diagram commutes.

e

E T (a, a)

!∃
λa

Λa

The object of the coend is denoted
∫ c∈C

T (c, c).

Example 3.3. 1. Similarly to how we can write limits as ends in Ex-
ample 2.2, we can take a colimit of a functor F : C → D by de�ning
T (a, b) = F (b) and taking a coend. In exactly the same way as in the
case of limits and ends, we have that the colimit of F is the coend∫ c∈c

T (c, c).
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2. Let's consider the coend of Set(−,−) : Setop × Set → Set. Since

the coend E :=
∫ c∈Set

Set(c, c) contains the image of every morphism
λa we can consider E to be the disjoint union

⊔
c∈C Set(c, c) modulo

some equivalence relation ∼. Our cowedge diagram exactly says that
for every morphism f : b → a we need f ◦ λa = λb ◦ f and so we need
(α : a → a) ∼ (β : b → b) whenever there exists a morphism f : b → a
such that fα = βf . The universal property for a coend tells us E must
contain all elements of

⊔
c∈C Set(c, c)/ ∼.

3. For a group G, consider the one object category BG where the mor-
phisms are group elements composed by multiplication. The coend of
BG(a, b) : BGop × BG → Set as above is the set

⊔
c∈C BG(c, c)/ ∼

where (α : a → a) ∼ (β : b → b) if and only if there exists f : b → a
such that fα = βf . For this category however, there is only one hom
set and fα = βf implies α = f−1βf which is exactly to say that α ∼ β
if they share a conjugacy class in G. Hence, the coend

∫ c∈BG
BG(c, c)

is the set of conjugacy classes of G.
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